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Abstract. We present two practical attacks on the CAESAR candidate
PAES. The first attack is a universal forgery for any plaintext with at
least 240 bytes. It works for the nonce-repeating variant of PAES and in a
nutshell it is a state recovery based on solving differential equations for
the S-box leaked throught the ciphertext that arise when the plaintext has
a certain difference. We show that to produce the forgery based on this
method the attacker needs only 211 time and data. The second attack is
a distinguisher for 264 out of 2128 keys that requires negligible complexity
and only one pair of known plaintext-ciphertext. The attack is based
on the lack of constants in the initialization of the PAES which allows to
exploit the symmetric properties of the keyless AES round. Both of our
attacks contradict the security goals of PAES.
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· authenticated encryption

1 Introduction

The CAESAR competition [2] (Competition for Authenticated Encryption:
Security, Applicability, and Robustness) has started in March 2014, and
its goal is to improve the understanding of the crypto community in the
area of authenticated ciphers through a public competition for submitting
authenticated encryption schemes that offer advantages over the widely
used AES-GCM [8]. In total, 58 ciphers were submitted to the open call, and
in the following three years, through security analysis and investigation of
the implementations advantages, it is expected that among these ciphers,
a few to be selected in a portfolio of recommended authenticated schemes
that are suitable for widespread adoption.

A number of the proposed CAESAR candidates (as well as the benchmark
AES-GCM) are based on the current encryption standard: the AES family of
block ciphers. The reason for this is twofold. First, the AES has undergone
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an extensive analysis and is assumed that its security is well understood
(or at least better understood compared to all of the remaining unbroken
ciphers). Second, AES offers a large software implementation advantage
on the latest processor through the so-called AES-NI instruction set, i.e.,
modern processors have dedicated instructions that allow to reduce the
execution time of the AES cipher calls.

In general, the CAESAR candidates based on the AES use the block
cipher in two ways: either as a whole (or a variant consisting of at least
a certain number of rounds), or only its round function. The first type
of candidates (OCB [6], AES-COPA [1], etc, and AES-GCM) are constructions
that require calls to the full 10-round AES-128 (or at least 4-round variants
with independent round keys, e.g, SHELL [11]). Usually, they are provable
modes based on security reduction to the security of AES, and thus benefit
from the current state-of-the-art cryptanalysis of AES-128 [4, 5]. The
second type uses only the AES round function and has no strict security
proof, i.e., the mode is not provably secure, however, the resistance against
common attacks is provided through ad-hoc techniques. Such candidates
(see AEGIS [12], PAES [13], Tiaoxin-346 [9]) benefit from the good security
properties and the software performance of the AES round function. They
tend to use less than 10 AES round calls per message blocks, and as such
are extremely fast.

Our Contributions. We provide a cryptanalysis of the CAESAR candidate
PAES [13] and show two attacks that contradict the security claims given
by the designers. Common for both of the attacks are the low complexity
requirements and misuse of the AES round function in PAES.

The first attack targets the nonce-repeating mode of PAES (called
PAES-8) and is a universal forgery attack of any plaintext with at least
240 bytes. It requires 211 time and data complexity to fully recover the
internal state and produce forgery. To launch the attack, we use a special
differential trail that can take two different paths. By analyzing the
ciphertext difference, the path is uniquely determined and allows state
recovery based on the differential property of the AES S-Box. Our attack
shows that a mere differential analysis (often given by providing the
best differential characteristic of a construction) is insufficient for proving
security in the nonce-repeating mode, even when the candidates guarantees
multiple applications of AES round function.

The second attack comes in a form of a distinguisher for a class of
264 weak keys among the total 2128 keys of PAES. We show that if the
attacker can control the nonce, then a single pair of known plaintext and



corresponding ciphertext is sufficient to distinguish PAES from an ideal
authenticated encryption scheme. The attack relies on the initialization
phase of PAES that does not use constants, while the AES round function
preserves certain symmetric properties when constants are absent. The
results of this paper are summarized in Table 1.

Table 1: Attacks on PAES.

Design Supported Attack Attack mode Size of key class Time

nonce modes (out of 2128) complexity

PAES-4 respecting distinguisher respecting 264 1

PAES-8 respecting+repeating universal forgery repeating 2128 211

PAES-8 respecting+repeating distinguisher respecting+repeating 264 1

Organization of the Paper. We recall the design details of the PAES

submissions in Section 2 and present the universal forgery attack on
PAES-8 in Section 3. Then, in Section 4 we introduce the distinguisher for
PAES in the context of weak keys, and we conclude the paper in Section 5.

2 Description of PAES

The family of authenticated encryption (AE) algorithms PAES has been
submitted to the ongoing CAESAR competition and consists of two con-
crete proposals: PAES-4 and PAES-8. As the name suggests, they both use
the AES design strategy [3], and take as input a variable-length plaintext, a
128-bit key, a 128-bit nonce and produce a variable-length ciphertext and a
128-bit authentication tag. The difference between PAES-4 and PAES-8 lies
in the size of the internal state, which amounts to four 128-bit blocks for
the former, and eight 128-bit blocks for the latter. A functional difference
between these two variants is in the mode: PAES-4 has security claims only
in the nonce-respecting mode, while PAES-8 in both, the nonce-respecting
and nonce-repeating modes.

To simplify the presentation, we describe only PAES-8 in the sequel, and
only as authenticated encryption. The design resembles a stream cipher:
it has an initialization (where the key and the nonce are loaded into the
state), then it processes the input message and produces the ciphertext,
and finally in the finalization it produces the tag. The internal state S has
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Figure 1: The round function StateUpdate(S,M). During the processing
of the plaintext, the XOR from S7 to S8 is absent.

eight words S1, S2, . . . , S8, each of 128 bits, i.e., |Si| = 128, i = 1, . . . , 8.
The state update function StateUpdate(S,M) is the round transformation
and uses eight keyless3 AES-round calls (denoted further as AES0) to update
the state as depicted in Figure 1.

Initialization. The 128-bit master key K and the nonce N are loaded
into the eight words of the state, the state goes through 10 rounds and at
the end the key is XORed to all eight words of the state:

S1 = K ⊕N, S5 = L4(K)⊕ L7(N)

S2 = L(K)⊕ L3(N), S6 = L5(K)⊕ L3(N)

S3 = L2(K)⊕ L(N), S7 = L6(K)⊕ L5(N)

S4 = L3(K)⊕ L2(N), S8 = L7(K)⊕ L6(N)

for i = 1 to 10

S = StateUpdate(State, 0)

for i = 1 to 8

Si = Si ⊕K

where L is the linear transformation that operates on the four 32-bit
columns a, b, c, d of a 128-bit word a||b||c||d, and is defined as L(a, b, c, d) =
(b, c, d⊕a, a). We denote Li the i-th functional power of the transformation
L, e.g., L2 = L ◦ L.

Processing the plaintext. In one round, from 16-byte plaintext Pi, 16-
byte ciphertext Ci is obtained with one call to the StateUpdate function
(see Figure 2):

3 We emphasize that all the AES calls are keyless, that is, composed of SubBytes,
ShiftRows and MixColumns (but no AddRoundKey).
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Figure 2: One round of the encryption.

tmp = S7

StateUpdate(S, Pi)

Ri = tmp⊕ S7
Ci = Pi ⊕Ri

Finalization and the tag production. Let |M | be the 128-bit encoding
of the message length. Then, the tag T is produced after 10 rounds of the
StateUpdate function where the message input is set to |M |:

for i = 1 to 10

StateUpdate(S, |M |)
T = S7 ⊕ S8

Claimed security of PAES. The claimed security of PAES is given in
Table 2. We emphasize in particular that 128-bit security is claimed for
the integrity of PAES in the nonce-repeating mode.

Table 2: Bits of security goals of PAES [13, Table 3.1].

Goal Nonce-respecting Nonce-repeating

PAES-4/PAES-8 PAES-4 PAES-8

Confidentiality for the plaintext 128 - -

Integrity for the plaintext 128 - 128

Integrity for the associated data 128 - 128

Integrity for the public message number 128 - 128



3 Practical universal forgery attack against PAES-8

In this section, we show a universal forgery attack for PAES-8 in the
nonce-repeating mode. The attack works for any plaintext with length of
at least 240 bytes, and requires only a small time and data complexity.
The steps of the attack can be summarized as follows:

1. Inject differences in two consecutive plaintext blocks such that they
cancel in S8 with a high probability.

2. The ciphertext difference after eight rounds will reveal if the cancella-
tion in S8 occurred and if so, it will leak information about the state
bits.

3. Once the state is recovered, the tag is produced by going through the
remaining of the transformations of the (now) public construction.

3.1 Differential trail and detection of difference cancellation

The differential trail used in the attack is given in Figure 3. We inject
difference ∆α in the plaintext P0, and try to cancel it with another
difference ∆β in the plaintext P1. Interestingly, this type of trail has been
discussed by the designers of PAES (see [13, Figure 4.3]), however, they
focused on the standard case of propagating the difference through eight
rounds and tried to predict it. On the other hand, we use a different
approach: our goal is not to predict the difference after eight rounds, but
only to detect if the initial differences in ∆α and ∆β have canceled. In
Figure 3, the trail can take two paths:

1. The differences ∆α and ∆β cancel, thus only the words with bold lines
are active,

2. The differences ∆α and ∆β do not cancel and there are additional
active words depicted with red lines.

We further show how to choose optimal ∆α and ∆β and how to detect
the cancellation.

Choosing plaintext differences ∆α and ∆β. For an arbitrary differ-
ence ∆α in the plaintext P0, the difference ∆β in the plaintext P1 should
be chosen such that it will cancel ∆α and thus will avoid activating the
state S8. Therefore, ∆α and ∆β are chosen so that the cancellation can
occur with a high probability – this happens when ∆α has only one active
byte. Let α and β be the input and output difference transition of the
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Figure 3: Differential trail used in the attack. The black bold lines denote
active state words. The red lines denote active words when ∆α and ∆β
do not cancel in S8.

S-Box, i.e., α changes to β with a probability 2−6. Then, ∆α and ∆β are
defined as

∆α = (α, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

∆β = MixColumns ◦ ShiftRows(β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

and thus ∆α after AES0 will change to ∆β with probability 2−6. We note
that the difference α can be located in any of the 16 bytes of the state.



Detecting the cancellation between ∆α and ∆β. We can detect if
the cancellation occurred by observing the differences in the ciphertexts Ci

(or equivalently, the difference in the key streams Ri) after eight rounds.
There are two cases:

• Cancellation occurred. From the trail on Figure 3, it follows that
the difference ∆R8 ⊕∆R7 is obtained when ∆R7 goes through one
AES0 round. It means that the difference in each of the 16 bytes of ∆R7

can be matched through the S-Box with the corresponding differences
in the bytes of ShiftRows−1 ◦ MixColumns−1(∆R8 ⊕∆R7). We note
that the probability of matching is one.

• Cancellation did not occurred. If the cancellation did not occur,
then there are additional state words with differences (depicted with
red lines in Figure 3). In this case, ∆R8 ⊕ ∆R7 is obtained when
∆R7 ⊕∆X (where ∆X is the non-zero difference in S6) goes through
AES0. In contrast to the above case, now ∆R7 and ShiftRows−1 ◦
MixColumns−1(∆R8 ⊕∆R7) can be matched through the S-Box only
with some probability lower than one.

Two randomly chosen differences can be matched through the S-Box
with a probability 127/256 ≈ 2−1. Without loss of generality, we can
assume that ∆X is active in all 16 bytes4. Therefore, when ∆α and ∆β
cancel, the probability of a 16-byte match is 1, however, when they do
not cancel, then the probability drops to 2−16. As a result, we can easily
distinguish the above two cases, by analyzing ∆R7 and ∆R8.

The same distinguishing method can be applied to 4 additional rounds
(see Figure 4). This way, we can increase the probability of distinguishing
the two cases, and end up with a very low probability of matching differ-
ences through S-Boxes in the case when ∆α and ∆β do not cancel. As we
apply it to five rounds, the probability becomes 2−5·16 = 2−80.

3.2 Recovery of state words

Assume that ∆α and ∆β have canceled (as demonstrated above, we can
single out the case when they cancel). It means that we have the input
difference ∆R7 and the output difference ∆R8⊕∆R7 of an active AES0 for
the word S7, i.e., SubBytes(∆R7) = ShiftRows−1◦MixColumns−1(∆R8⊕
∆R7). As in S7, all 16 bytes are active (with a probability very close to

4 The difference ∆X is produced after some initial difference goes through multiple
AES rounds, thus we can assume ∆X is a random 16-byte difference. As a result, the
probability that in ∆X all 16 bytes are active is (1− 1/256)16 ≈ 1.
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Figure 4: Extending the previous trail for 4 additional rounds.

1), we can easily find the values of the individual bytes by the well-known
method of solving 16 differential equations of the form S(x ⊕∆input) ⊕
S(x) = ∆output that come from the system using S-Box S. Each such
equation on average has two solutions, because if x is a solution, then
x⊕∆input is also a solution. To find a single solution for each byte, we
repeat once the recovery for different ∆α and ∆β. As a result, we can
recover the value of S7 at round 8 of the encryption.

Using the very same method, we can recover S7 at rounds 9, 10, 11 and
12. For instance, for round 9, the input (resp. output) difference of AES0 is
∆R7⊕∆R8 (resp. ∆R7⊕∆R8⊕∆R9). With the knowledge of the values
of 5 consecutive S7, we can uniquely recover the values of S6, S5, S4, S3
at round 8 by simple computation using those words. Let SvR

u be the
u-th variable of the state for round v. For instance, S8R

6 is computed by
S8R
7 ⊕ AES−10 (S9R

7 ).

We can recover two more S7 words (of additional 2 rounds) if we
shift the round where we apply the difference ∆α and instead to P0 we



introduce ∆α at P2 and ∆β at P3. Hence, we will have the values of S7
for 7 consecutive rounds.

The state word S8 is different compared to the remaining seven words
and it is not possible to recover it by using the above method. Nevertheless,
we can still recover S8 at round 0 of the encryption based on the differences
∆α and ∆β, i.e., we can recover the active byte where the difference ∆α
is non-zero. By repeating the recovery with 16 different positions of active
bytes, we can deduce the whole state word S8 at round 0. As S8 does not
take feedback from any other word (but the plaintext), we can easily find
the value of S8 at any round, including our target round 8. That is, with
the knowledge of S7 of seven consecutive rounds (8,9,...14) which can be
deduced as shown above, and S8 at round 8, we can recover the full state
at round 8.

3.3 The attack

We now present the universal forgery attack. The goal of the attack is
to produce a tag of an arbitrary plaintext. In our case, the attack works
as long as the length of the plaintext is at least 16 blocks (240 bytes).
Our forgery is based on a state recovery, i.e., if at some round the whole
state is known, then the tag can easily be produced by performing the
remaining operations of the finalization, and therefore it can be produced
offline.

Let P0, P1, . . . , P14 be the first 15 blocks of the plaintext. Then, the
forgery can be described with the following algorithm:

1. Query the first 15 plaintext blocks of the target (P0‖P1‖ · · · ‖P14), and
obtain the key stream R0, R1, · · · , R14.

2. FOR position = 1 to 16 DO

3. FOR i = 1 to 27 DO

4. Choose 1-byte difference ∆αi with active byte at position
and find the corresponding ∆βi.

5. Query (P0⊕∆αi‖P1⊕∆βi‖P2‖ · · · ‖P14) and obtain the key
stream Ri

0, · · · , Ri
14.

6. Check if the difference R7⊕Ri
7 can result in R7⊕Ri

7⊕R8⊕Ri
8

by AES0.
7. Check the same property for additional 4 rounds.
8. Save the pairs that pass all the above checks.
9. END FOR

10. Recover the byte at position of the state word S8 at round 0
11. END FOR



12. Recover S7 at rounds 8,9,10,11,12
13. FOR i = 1 to 27 DO

14. Choose 1-byte difference ∆αi and find the corresponding ∆βi.
15. Query (P0‖P1‖P2 ⊕ ∆αi‖P3 ⊕ ∆βi‖P4‖ · · · ‖P14) and obtain the

key stream Ri
0, · · · , Ri

14.
16. Check if the difference R9 ⊕Ri

9 can result in R9 ⊕Ri
9 ⊕R10 ⊕Ri

10

by AES0.
17. Check the same property for next 4 additional rounds.
18. Save the pairs that pass all the above checks.
19. END FOR

20. Recover S7 at rounds 13 and 14.
21. Deduce all the state words at round 8.
22. Go through the remaining of the transformations and produce the tag.

The first loop is used to recover S8, and to recover five S7, and the
second to recover the remaining two S7. Note, each of the loops (the inner
loop of the first loop) will produce two pairs, as the probability of the trail
in the top (∆α will be canceled by ∆β) is 2−6. In case no good trails with
probability 2−6 exist, the attacker can switch to ones with probability
2−7 and run the loops 28 times. Furthermore, as we have seen from the
previous analysis, a probability of false positives is very low (around 2−80).

From the algorithm, it follows that the time complexity of the attack
is 16 · 27 + 27 ≈ 211 computations. The data complexity is similar and
comes in a form of chosen plaintexts. To solve efficiently the differential
equations, the attack needs about 216 bytes in memory.

4 Practical distinguisher for a weak-key class of PAES

We continue our analysis by presenting a distinguisher for a class of 264

weak keys (out of 2128 keys) in PAES-8. The distinguisher requires negligible
time complexity and only a single pair of known plaintext-ciphertext and
a chosen nonce. It exploits the lack of constants in the design and the
symmetric properties of the keyless AES round function. Although we give
the distinguisher for PAES-8, we note that a similar attack is applicable
to the nonce-respecting mode PAES-4.

4.1 Symmetric properties of the AES round function

We first recall the known symmetric property of the AES round function [7].
Namely, if a state is symmetric in the sense that its two halves are equal,



then the keyless round function AES0 of the AES maintains this property.
We recall the property of [7] using block matrices, and we introduce the
following more general notations:

U(A,B) =

(
A A

B B

)
, V (A,B) =

(
A B

B A

)
, W (A,B) =

(
A B

A B

)
.

Additionally, we denote by U , V and W the associated sets respectively
for all possible values of the 2 × 2 block matrices A and B. Finally, we
denote M the constant MDS matrix used in the AES round function, and
observe that:

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 =

(
M1 M2

M2 M1

)
= V (M1,M2) ∈ V.

Property 1. Let S ∈ U . Then, AES0(S) ∈ U .

Proof. Let S = U(A,B) ∈ U , and write the bytes in S as:

(
A A

B B

)
=


x0 x4 x0 x4
x1 x5 x1 x5
x2 x6 x2 x6
x3 x7 x3 x7

 .

As the SubBytes operation applies the same bijection to all the bytes in
the state, we ignore it here as it obviously preserves the structure. After
the ShiftRows operation, the state becomes

x0 x4 x0 x4
x5 x1 x5 x1
x2 x6 x2 x6
x7 x3 x7 x3

 def
=

(
A′ A′

B′ B′

)
,

thus it still belongs to U . Then, the MixColumns operation results in:
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

×

x0 x4 x0 x4
x5 x1 x5 x1
x2 x6 x2 x6
x7 x3 x7 x3

 =

(
M1 M2

M2 M1

)
×
(
A′ A′

B′ B′

)

=

(
M1A

′ ⊕M2B
′ M1A

′ ⊕M2B
′

M2A
′ ⊕M1B

′ M2A
′ ⊕M1B

′

)
def
=

(
A′′ A′′

B′′ B′′

)
∈ U .

ut



Property 2. Let S ∈ W. Then, AES0(S) ∈ V, and AES0(AES0(S)) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

(
A B

A B

)
=


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 .

Again, we ignore the SubBytes operation as the applied bijection preserves
the structure of the internal states. However, after the ShiftRows operation
the state becomes: 

x0 x2 x4 x6
x3 x5 x7 x1
x4 x6 x0 x2
x7 x1 x3 x5

 def
=

(
A′ B′

B′ A′

)
∈ V,

which is transformed by the subsequent MixColumns transformation into
the state:(

M1 M2

M2 M1

)
×
(
A′ B′

B′ A′

)
=

(
M1A

′ ⊕M2B
′ M1B

′ ⊕M2A
′

M2A
′ ⊕M1B

′ M2B
′ ⊕M1A

′

)
def
=

(
A′′ B′′

B′′ A′′

)
∈ V.

After applying a second keyless AES round, we get:

(
A′′ B′′

B′′ A′′

)
=


y0 y2 y4 y6
y1 y3 y5 y7
y4 y6 y0 y2
y5 y7 y1 y3

 SR−→


y0 y2 y4 y6
y3 y5 y7 y1
y0 y2 y4 y6
y3 y5 y7 y1

 def
=

(
A′′′ B′′′

A′′′ B′′′

)
∈ W,

and by the MixColumns:(
M1 M2

M2 M1

)
×
(
A′′′ B′′′

A′′′ B′′′

)
=

(
M1A

′′′ ⊕M2A
′′′ M1B

′′′ ⊕M2B
′′′

M2A
′′′ ⊕M1A

′′′ M2B
′′′ ⊕M1B

′′′

)
def
=

(
A′′′′ B′′′′

A′′′′ B′′′′

)
∈ W,

which concludes the proof. ut

Finally, we can represent the action of the keyless AES round function
AES0 on the three sets U , V and W as follows on Figure 5.
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Figure 5: Action of AES0 of the symmetrical states from U , V and W.

4.2 Symmetric properties of the PAES transformations

Along with AES0, PAES uses a few more transformations, in particular, the
XOR and the linear transformation L. We investigate here how these two
transformations preserve the class belongings.

Property 3. Let X be either U , V orW , and let S1, S2 ∈ X . Then, S1⊕S2 ∈
X .

Proof. Let S1 = U(A1, B1), S2 = U(A2, B2) ∈ U . Then:

S1 ⊕ S2 =

(
A1 A1

B1 B1

)
⊕
(
A2 A2

B2 B2

)
=

(
A1 ⊕A2 A1 ⊕A2

B1 ⊕B2 B1 ⊕B2

)
∈ U .

The cases for V and W can be proven similarly. ut

Property 4. Let S ∈ W. Then, L(S) ∈ W.

Proof. Let S = W (A,B) ∈ W, and write the bytes in S as:

S =

(
A B

A B

)
=


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 .

Then:

L(S) = L


x0 x2 x4 x6
x1 x3 x5 x7
x0 x2 x4 x6
x1 x3 x5 x7

 =


x2 x4 x6 ⊕ x0 x0
x3 x5 x7 ⊕ x1 x1
x2 x4 x6 ⊕ x0 x0
x3 x5 x7 ⊕ x1 x1

 ∈ W.

ut



4.3 The distinguisher

To distinguish PAES, we use the first ciphertext C0 produced during the
encryption of an arbitrary plaintext P0 with a secret key K ∈ W and
nonce N ∈ W . The key K can be any of such 264 keys (the first two rows
equal to the second two rows), and the same structure holds for the nonce
N .

We first inspect how the state words S1, S2, . . . , S8 change the class
belongings (either W or V) from the very first to the last steps of the
initialization phase:

• K,N ∈ W. By Properties 3 and 4 S1, S2, . . . , S8 ∈ W after the initial
assignments in the initialization.

• After the first update. By Property 3, the XORs do not change the
class belongings, thus each S6, S7, S8 stay in W after the XORs at the
top of the StateUpdate. Further, according to the Property 2, AES0
changes the class from W to V. Consequently, at the end of the first
update, Si ∈ V, i = 1, . . . , 8.

• The second update is similar to the previous one, but this time the
class of Si changes to W.

• . . .
• After the tenth update. The classes of all Si are W.

• After the XORs of the key. As each Si is in W and the key is in W,
by Property 3, it follows that each Si will be in W.

We now focus on the production of the ciphertext C0. Obviously,
tmp = S7 = W (A1, B1) ∈ W and after the application of the StateUpdate,
S7 = V (A2, B2) ∈ V by Property 2. Thus, from the definition of the
ciphertext C0 = P0 ⊕ tmp⊕ S7, we get:

C0 ⊕ P0 =

(
A1 B1

A1 B1

)
⊕
(
A2 B2

B2 A2

)
=

(
A1 ⊕A2 B1 ⊕B2

A1 ⊕B2 B1 ⊕A2

)
=

(
X Z

Y T

)
.

Obviously X ⊕ Y ⊕Z ⊕ T = 0, hence the xor of the four 32-bit blocks
of the first ciphertext and plaintext must result in a zero block. Therefore,
we have a distinguisher which requires negligible complexity and only a
single block of plaintext/ciphertexts to distinguish PAES when instantiated
with any of the 264 keys and nonces from the class W. We note that our
computer simulation confirmed the correctness of the distinguisher.



5 Conclusion

We have shown two practical attacks on the CAESAR candidate PAES: a
universal forgery attack and a distinguisher, which contradict the security
claims of this authenticated encryption scheme.

Our analysis gives insights into possible misuses of the AES round
function. Although this transformation per se provides excellent resistance
against differential and linear attacks (once it has been iterated several
times), by no means it is sufficient proof of security against all attacks. The
designs based on the round function that does not apply any constants,
as we have seen on the example of our distinguisher and the chosen-key
rotational distinguisher [10] of PAES, are susceptible to attacks that exploit
the symmetry of the AES transformations. Consequently, using random
constants in such designs should be taken as a requirement to destroy those
symmetric behaviors. Furthermore, as our forgery attack shows, evaluating
the differential properties in a straightforward manner (providing the best
in terms of probability differential characteristic), does not guarantee
security against differential attacks in the nonce-repeating mode.

We would also like to emphasize the importance of the technique used
in the forgery attack on the nonce-repeating mode. Due to the mode
and the attack framework, there is no need to provide a valid tag at the
beginning of the attack (forgery or state recovery). Hence the attacker can
focus only on finding a differential characteristic that will leak differences
in state words sufficient for recovery based on solving differential equations.
The characteristic does not necessarily need to hold with a high probability,
but for the forgery on PAES this was required in the first two rounds only
because there was an alternative path that does not permit state recovery.
In general, the probability of the characteristic is irrelevant, however, it is
important for the characteristic to leak input and output differences of
non-linear operations which subsequently will be used to recover the state
bits. We believe that this technique (improved or modified variants) can
be a valuable approach for cryptanalysis of other CAESAR submissions and
authenticated encryption schemes.

Acknowledgment. We would like to thank the anonymous reviewers for
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